

151

KBE/AI for Ships Construction - A Feasibility Study

M. Tufail Shahzad, Northwestern Polytechnical University, Xi’an/China, ts@mastership.nl

Jacques Hoffmans, MasterShip Software BV, Eindhoven/Netherlands, jh@mastership.nl

Abstract

After about 60 years of CAD in shipbuilding, we are currently entering the 3rd generation of CAD

software: The generation that leverages the power of Artificial Intelligence (AI). These topics will

strongly increase the future development and the maturity of CAD/CAM. The KBE (Knowledge Based

Engineering)/AI (Artificial Intelligence) for Ships project is the development of an intelligent software

system which contains a great number of special knowledge and expertise on shipbuilding

constructions and assembling. Based on this knowledge and expertise stored in the system, the expert

system must apply artificial intelligence and computer technology to simulate the decision-making

process of human experts to reason about, judge, and finally solve, complex issues. In the recent

times, influence of AI, Cloud Collaboration and VR, has expanded rapidly, where MasterShip’s

position in Maritime industry can play an important role for these developments. This paper also

briefly explains the results of the Innovative approach and detailed technical feasibility performed by

MasterShip on different cases.

1. Introduction

Nowadays it is a common problem that the detailed engineering and work preparation for ships is

done by inexperienced young engineers in the drawing room where this was done by experienced

workers at the shop floor before. At this point, Mastership is ambitious to introduce a virtual system

called “Knowledge Based Engineering” for ships (KBE for ships) especially at this stage of the

shipbuilding process. This means we want to make virtual use of the practical knowledge of

experienced workman and technical constraints during the detailed engineering and the work

preparation. Therefore the KBE for Ships system will be a software system that makes decisions by

simulating the problem-solving process of human beings. Based on this knowledge, expertise and

constraints that will be stored in the system, the expert system must apply artificial intelligence to

simulate the decision-making process of human experts to perform reasoning and make judgments,

and finally solves complex issues. Design and engineering has always been the interesting and most

complex phase for ship construction where to keep the information in order has never be easy. A

conventional approach for such phase is presented in Fig.1.

Fig.1: Conventional approach

mailto:ts@mastership.nl
mailto:jh@mastership.nl

 152

We, at MasterShip, believe that most of the things done in the design office can be replaced or better

managed with a help of knowledge based systems, i.e. expert systems, Fig.2.

Fig.2: Basic concept of expert system

2. Literature review

Automation in ship design and engineering is introduced since mid-sixties of the 20th century. About

10 years after the first experiments on CAD/CAM in general in the fifties of the 20th century, Dokken

(2012). Since this introduction of CAD/CAM there were many developments as well as in software as

hardware that had great influence on the design and production process of ships. CAD/CAM Was a

new industry and today we can conclude that there are still some immature effects. A few remarkable

points are:

• Isle of automation: All kind of specific process steps where automated. As well over different

involved disciplines as hull, HVAC, electrical, interior and mechanical as over the same

discipline but divided over the sequential process steps like concept, basic, detailed and

production design.

• Lack of digital communication: Even lack of conventional communication! It appeared to be

hard to pass on data to other design and engineering stages.

• Changing processes: The design and building process changed as a consequence on the

CAD/CAM development. For instance:

- 50 years ago, parts of the detailed design and the full production process was done

entirely non-digital on the shop floor and lofting floor of the shipyard and is done now

fully digital during the last stages of the design and engineering process.

- Another example is that the design and engineering process stages are growing into each

other. The boundaries between the stages concept, basic, detailed and production design

the stages are grey and the tasks over these stages are more and more integrated.

- Simultaneous engineering: work on more disciplines can be performed at the same time

and earlier in time than before.

• Earlier need of information and decisions: Because many process stages can be performed

earlier and in more detail the information on equipment and details is needed earlier in the

153

process. Anno 2015 the still appears to be a challenge. It is also noticed that an old rule that

was also valid in non-digital design and engineering is still valid: the earlier a mistake is

found the cheaper to solve it. Or the other way around: the later a mistake is found the more

expensive to solve it. In CAD/CAM it seems obvious that a mistake in the digital phases

(concept, basic, detailed and production design) will almost always be cheaper to solve than a

mistake at the shop floor.

Above mentioned dots lead to several “Gaps and Overlaps” in the design, engineering and assembly

of ships. The costs involved in these Gaps and Overlaps are estimated at 20 % of the total project

costs, Moyst and Das (2005).

3. Requirements

Knowledge Based Systems are mostly based on so-called rule-based systems in which heuristic rules

are used to encapsulate knowledge from human experts. A knowledge engineer captures these rules

during sessions with a human expert, in which think-aloud protocols are used to extract the used

knowledge. Subsequently this knowledge is encoded in the form of IF-THEN rules and used by an

inference engine, which applies the knowledge to projects in which this knowledge is required.

In some cases, the expert who makes comments while using a CAD system may also propose new

rules during the design process and later extend these notes into full rules. Also some systems use

machine learning to automatically acquire such knowledge. Because the existing software of

MasterShip is based on AutoCAD, this should be target of any possible solution.

So in general, the following functions should be made available to be included in the proposed

software:

1. A facility to note and register required KBE facilities, preferably during the design process.

This may help in identifying missing functionality. It is mostly used to register where a need

exist for expert advice. A first list of known requirements would be a good start.

2. A facility or method to acquire the identified knowledge. This will mostly be based on

Knowledge Engineering principles.

3. An open-source inference engine that can be embedded in the AutoCAD environment. We will

investigate what libraries are available and how well they fit into the requirements.

4. A facility to encode and test the rules with the proposed system. Because maintenance of a

knowledge base can be a daunting task, good verification and testing facilities are a very

important requirement. There should be a number of test projects in which all designed rules

are tested. There should be a complete regression test environment that allows testing of the

entire system and its facilities after every modification.

5. A system to automatically document the acquired rules so the users may get a good idea of

what kinds of checks and advice can be expected while using the system.

If possible, the inclusion of an explanation facility should be included to explain to the users why a

certain rule is being applied.

4. Scope

MasterShip encountered four main reasons to implement this research in the shipbuilding industry as

knowledge based engineering:

1. Integrating general arrangement specification and classification - As well as for the primary as

secondary scantling and their belonging details it costs a lot of time to design and engineer

according to the applicable classification and/or flag rules. Classification Societies released

software these days to find the right dimensions. Integration of the classification/flag rules

into a knowledge based database for the CAD/CAM software will be a great step forward.

 154

2. Using practical workshop experience at the drawing office - During the non-digital period

when the production design of the ship was done at the shop floor the knowledge of how to

build the ship was added by the workers at the shop floor. This added knowledge existed out

of general shipbuilding knowledge and specific yard-oriented knowledge. The yard-oriented

knowledge was based on the available stock, machinery, working space, cranes, storage space

and employees’ capabilities at the shipyard. Because this work was done in the real physical

stage it was visible for everyone who was around. In the modern design and engineering

process the work preparation is done in the virtual stage. Sometimes at the drawing room at

the shipyard, sometimes at a design or engineering company elsewhere. Because the last

decades CAD/CAM was a way of working that was more popular and only educated to

younger people the people who did this modern digital and virtual engineering work did not

have a lot of experience yet in general shipbuilding and also not in the yard specific

shipbuilding. It was and still is a challenge to bring the shop floor knowledge to the drawing

room. A knowledge base database can be of great help here.

3. Becoming a learning organization - Shipyard has to take care for their company knowledge.

Many times, the so-called company knowledge is only stored in individual knowledge storage

systems of employees. Sometimes it is stored in personal digital files or even in small

personal non-digital notebooks. When people leave the company, the knowledge is lost.

Companies can grow into learning organizations when they use a system that this knowledge

is stored in as well as for storage low accessible as well as for retrievable low accessible

knowledge database.

4. Automation of quality control - Quality control takes a large amount of time during the design

and engineering process. It is evident that this time must be spent because finding mistakes as

early as possible is much cheaper than finding mistakes in a later stage as for example in the

worst case at the assembly stage of the ship. It is a challenge to automate a part of the quality

control via the use of knowledge base engineering. It will enable to do things right at once

instead of repairing afterwards which will definitely be will be a great step in the field of

shipbuilding and maritime industry.

5. Feasibility study

In order to validate the concept and innovation proposal by MasterShip, a detail technical feasibility

study was performed during the year of 2015-16. This technical report gives an introduction to the

concept of Knowledge Based Engineer in product development. It discusses applications of KBE/AI

and also describe the process of developing KBE-systems. A brief view of commercial KBE/AI

software is given and then benefits and drawbacks with KBE is discussed as well. The report is

finished off with some statements about the current research topics of KBE.

Some concrete findings of that report are being mentioned below for a better understanding of the

previous research on this regard:

1. As described in the conclusions of the preceding sections, we recommend to first design a

number of template interfaces between AutoCAD and a RuleBase system, using a simple

sequential Rule Execution mechanism. This system can be built around the ShipHull example

and form a Proof-Of-Concept application. It can be used directly for demonstrations or even

be used as a small implementation of the KBE.

2. At a later stage, this system can be expanded with more knowledge and AutoCAD features

and will then also require more facilities from the Inference Engine. This will form an inte-

grated system, wholly proprietary, eliminating the need for a complicated language interface.

3. During the feasibility research, after completion of multiple test using inhouse inference

engine, it is concluded that such system will be able to perform the neural network

155

characteristic which will lead us to machine learning of such data that is self-generated rules

based on the decisions throughout the process.

4. We propose a two-phase approach, where in:

a. first phase the code that is already available will be expanded to make a working

prototype, with a mock-up Inference Engine.

b. The second phase will expand upon this program and based on several tests with users be

developed into a functional Proof-Of-Concept.

This will then form the basis for a later actual implementation, in which the other features will

gradually be implemented. This system can grow by adding more problem areas and its associated

knowledge. There will be many more AutoCAD interfaces and additional facilities in the Knowledge

Base and Inference Engine.

5.1. Direction

There are at least two major parts for the a KEB system, Ship Design Data and a Decision Making

algorithm, which may include optimization and machine learning algorithms. Now there are some

open sourced tools or algorithms used for machine learning, which may be used in the Expert

Systems. The Ship Design Data must be parameterized so that the algorithm can build the connections

or rules between those parameters. I think how to parameterize the design data will need a lot of

research, for the key parameters must be chosen and feed to the algorithm of machine learning. And it

may need tons of data for the machine learning. For the algorithms, we also need to find the best one

fit our area:

• Intelligent construction design - This is mainly for stage of ship construction detail design, to

combine class-society rules and customized templates in the process of making construction

design, with an interactive way. In industry of aviation and automobile, this technology has

been widely used for many years.

• Ship hull surface division - That means to combine expert knowledge for the work of making

seams/butts in an interactive way. Influence factors of hull thickness, curvature, construction

lines arrangement, shipyard-workshop capability, etc. shall be included.

• Welding information add-on In the stage of work preparation, clients will ask for adding

welding information in the building kit, such as welding length, material, method and green

margin, etc., this kind of information is related to class rules and shipyard-workshop capabil-

ity.

• Assembly plan - Every shipyard has it unique capability of manufactory and assembly, the

best Assembly Plan shall match the feature of the shipyards and optimize the process of

cutting, welding, coating, assembly, etc.

5.2. Long-term goal

The long-term goal of AI SH is that companies can become self-learning organizations. Learning by

automatically adding new rules to the system. Self-learning by allowing the program to suggest the

adaption of new rules. Finally, the goal must be that the AI SH program will not just check on rules

but will implement the rules automatically as well. Also, the set-up of a consultancy company for

advice on AI in the same domain is a long-term goal.

5.3. Machine Learning in the shipbuilding domain

Almost all rules and interfaces that have been identified so far are logical constructions that do not

lend themselves for a machine learning approach. Learning the Rules of a RuleBase would require a

large number of examples and associated solutions to allow automatic learning. Such situations may

apply to certain other tasks in shipbuilding that were not present in the three examples that we

investigated.

javascript:;

 156

6. The rule base architecture

Fig.3 shows a simple flow chart how the rule base is designed in relation with our inference engine. It

shows the overall process of how the information will be added and how the deducing of results will

lead us to the final conclusions.

Fig.1: Proposed rule base and inference engine

157

6.1. The rules

Each rule consists of a number of parts:

DefRule R=Plate-MaxSize COMMENT: Check if max plate size is within

Yard limits

 IF: $OR Length > Yard.Plate-Max-Length

 Width > Yard.Plate-Max-Width

 THEN: 100 (Error Size in Plate $Id)

Name: Is a unique name that the Rule is referred by.

Comment: Is a short description of what this Rule does. It is used later on when an explanation for a

certain decision is requested.

If: Is the collection of Facts that need to be True to make the Rule fire.

Cond: Is the relationship between the Facts of a Rule. This can be an $AND or $OR condition. If

more complex situations are needed different Conditions need to be made part of the Inference

Engine.

Then: Is the Conclusion of the Rule. In most cases it will conclude another Fact, like the state of a

Plate, which indicates if it contains an Error. A conclusion has an associated Certainty Factor.

Facts: Are the Data elements of a Rule and can be part of the Premises (If) or the Conclusions

(Then) or both. Since all Facts have an associated Certainty Factor, the Inference Engine needs a

facility to combine the certainties of all its Facts.

Funct: The Conclusion of a Rule may also contain several Functions. In the example a text is written

to a Log file and also to the Console. There may be a number of Functions on the System Level, like

Messages, but also functions, associated with the Context level.

6.2. Certainty factors

To make reasoning with uncertainty possible, the Inference Engine needs some facility to handle this.

There are several approaches to this; the most important ones are Bayesian Logic and Certainty

Factors. They both combine the probability/certainty of all Facts of a Rule to a total Certainty when

the Rule fires. For instance, if one of the Conditions of a rule has a very low certainty this should

decrease the overall certainty of the conclusion. On the other hand, if there are several rules, that all

can draw conclusions of a certain Fact, then each instance of such a Rule should increase or decrease

the overall certainty. It should be some kind of majority ruling, that when two rules both conclude that

something is True but another one that it is False, the total should be somewhat True but not False.

This process is generally referred to as Truth-Maintenance.

6.3. Functions

In addition to drawing conclusions and determining the certainty of a Fact, Rules may also execute

Functions. There can be a Message or a Log entry, but a Rule may also ask Questions or make

Suggestions. In addition, a Rule might highlight the Plate on the screen, to indicate that something is

wrong. If the system is used as a design assistant, there may be functions to redraw or resize one or

more Plates automatically. Functions that otherwise would be done manually by the user could be

automated by the rule base.

6.4. Knowledge base and inference engine

Knowledge base is implemented as an in-memory structure of all contexts, rules and concepts as

defined in the source code for a certain Rule Base. It is entered with a standard text editor and

compiled by Acquaint when loading the Rule Base. errors and warnings are generated for syntax

errors, which need to be fixed before running the knowledge base.

 158

7. Development environment

7.1. Development of instantiated Rule Base

Instantiation was originally thought to be realized by having many instances of a single rule. In the

new Acquaint system, this has been implemented as Indexed Contexts, which act as a collection of

Rules and Concepts, that may be re-used on different sets of input values. So there will always only

be one set of active Rules in a given Context, but they can be re-used with different inputs and thus

generated different outputs. Each case is handled completely throughout the entire Rule Base and

when the final conclusions are drawn, a new case is started. If in the future, we will encounter

situations that require several instances, we will set up a new mechanism to deal with that.

For instance, the current implementation will reason about a single plate. As explained earlier a plate

is a construct, based on the boundaries of defined hull-lines on four sides. When one plate has been

analyzed, the next one will be checked. However, when situations occur, where we need to reason

about adjacent plates, there will be a need for two, or more plates. This can be solved initially by

defining a number of separate contexts, one for each plate. If however there is a need for a variable or

unlimited number of plates to co-exist, true instantiation will be required and we will need to adapt

the Inference Engine.

7.2. Inference engine class

The actual Inference Engine and development environment is now based on Acquaint 2020, which is

distributed as an executable and the Test Data Source, distributed as a Python program, later to be

extended with the AutoCad interface, based on PyAutoCad.

Fig.4: Inference engine class

7.3. Rule collection

Three example problems have been defined before and one of them has been implemented as a demo,

domain, however, is still rather limited. What it currently does, is checking if a plate fits in the

159

restrictions of a certain Yard. This is an example of relatively simple rules. They could be made more

challenging, as can be seen in the Acquaint Demo system Spock, which is a simple Medical Diagnosis

demo, dealing with children’s diseases. The HullPlates demo could be extended with more

complicated rules, if desired.

7.4. Acquaint: In-house testing facility

The development environment consists of a user interface, the compiler and the inference engine.

They are provided as a installed python application that connects with the data source, when starting

up. The data source can work independently, providing test cases as input, or be connected to autocad,

once the pyautocad interface has been implemented.

When the system is disconnected from the data source, all data has to be entered by the user,

providing an easy way to test the rulebase during development, as all information to be retrieved from

the data source will be asked from the user. Underneath is an example of the user interface, operating

without a data source. User face of such facility is presented in Fig.5.

Fig.5: Acquaint user interface

 160

7.5. Why acquaint?

Acquaint comes equipped with a learning facility in the form of Neural Networks. We intend to use

this facility in the future as well. In general, learning requires a large number of examples and that is

something, that is not available in our problem domain. That is the reason that a Rule Based system is

much more appropriate for this problem domain than Machine Learning.

However, when using the system, many examples are gradually being collected. For the Ship-Hull

example, for instance, each Plate represents a case, where the RuleBase provides an analysis, but it

also offers an opportunity to collect data about each Hull-Plate that is being investigated. The learning

interface can collect a number of properties about each hull-plate seen, and associate these with

conclusions, drawn from it and feed this information into a Neural Network. That way we could also

collect data about other elements, for which there exist no Rules yet. The learning mechanism will be

able to collect information in this way and ‘learns’ new rules, that are not based on the If-Then

format, but on the association between properties, thus forming a new ‘Neural Rule’, that collects

more knowledge as the system is being used.

This learning facility will be part of a future version of Acquaint and it will be to our advantage to

think about the possibilities in advance, in order to make it part of the total approach.

8. Conclusion

During this feasibility we have implemented our previous findings in-compliance with our testing

facility environment and we succeeded to deduce many interesting facts. Based on these facts we can

further expand our project scope area. The main findings of the study are the following:

1. Artificial intelligence in the field of ship construction will not only solve the long-standing

issues of mankind in the engineering process but also expand the scope into new heights.

2. From technical perspective, we realized that there are several open-source and commercial

Inference Engines available, the ones most useful for this project are written in Java which

implements some dialect of Lisp.

3. Using such a system requires the development of a two-way interface between Auto-CAD and

the Inference Engine. After trying to use one of the existing interfaces it became clear that the

amount of work to make such an interface work seems larger than the effort to build the

Inference Engine itself. None of the available interfaces we found, were in use, nor were they

maintained and that is not without a reason.

4. The complexity of the Inference Engine for this project is actually not too large, because most

of the problems need to be solved in interfaces between the Rule Base and AutoCAD. Certainly

in the beginning a simple forward chaining approach is sufficient and we found some open-

source projects that could serve a good starting point.

The kind of Rules that would be required for the desired KBE were investigated by building a mock-

up Rule Base for three small example projects. In some cases, it proves that a more tightly integration

between the required AutoCAD functions and the Rule Base could benefit, which is another reason

why a dedicated Inference Engine would be more appropriate

9. Recommendations

Based on these findings, backed by some implementations of parts that seemed most crucial we

recommend the following plan of action:

1. Finish the demo project and develop a working Rule Base for the ShipHull example. This

requires completing the AutoCAD interfaces.

2. Build a very small first Inference Engine, which does nothing else but execute the Rules

sequentially. If forms the basis for further development.

161

3. Make this first demonstration work completely and use as a basis for the development of a

Proof-Of-Concept project.

4. Set up a plan to extend this demonstration into a full POC in which the three main com-

ponents, the Rule Base, the Inference Engine and the AutoCAD interfaces are implemented

and form a basis for further development.

We can overall conclude that at this stage we may further need to inspect the rule base tree by

expanding the main items of the test facility. It is unstable and selecting things may crash the system

Please note that there is a timeout on answering questions, Currently if you do not answer in time, it

crashes which leads us to investigate further to this testing environment to make it stable and

effective.

References

CHAPMAN, C.B.; PINFOLD, M. (2001), The application of a knowledge based engineering

approach to the rapid design and analysis of an automotive structure, Warwick manufacturing group,

Advanced Technology Center, University of Warwick

DOKKEN, T. (2012), The History of CAD, The SAGA Project

MARTIN, J.L. (2009), Data Modelling, Its Use and Contribution to Ship design, Manufacture, Build

and Operations, ICCAS Conf., Shanghai

MOYST, H.; DAS, M.B. (2005), Factors Affecting Ship Design and Construction Lead Time and

Cost, J. Ship Production 21/3, pp.186-194

